

Enantioselective Desymmetrization via Carbonyl-Directed Catalytic Asymmetric Hydroboration and Suzuki–Miyaura Cross-Coupling

Gia L. Hoang,[†] Zhao-Di Yang,^{‡,†} Sean M. Smith,[†] Rhitankar Pal,[§] Judy L. Miska,[†] Damaris E. Pérez,[†] Libbie S. W. Pelter,^{||} Xiao Cheng Zeng,[†] and James M. Takacs^{*,†}

[†]Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States

[‡]Key Laboratory of Green Chemical Engineering and Technology, College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China

[§]Department of Chemistry, Yale University, New Haven, Connecticut 06518, United States

^{II}Department of Chemistry and Physics, Purdue University Calumet, Hammond, Indiana 46323-2094, United States

Supporting Information

ABSTRACT: The rhodium-catalyzed enantioselective desymmetrization of symmetric γ , δ -unsaturated amides via carbonyldirected catalytic asymmetric hydroboration (directed CAHB) affords chiral secondary organoboronates with up to 98% ee. The chiral γ -borylated products undergo palladium-catalyzed Suzuki–Miyaura cross-coupling via the trifluoroborate salt with stereoretention.

hiral organoboronates are useful intermediates in organic \checkmark synthesis,^{1,2} and consequently, a number of research groups are developing enantioselective methods for their preparation.³⁻¹⁰ We reported the rhodium-catalyzed carbonyldirected catalytic asymmetric hydroborations (directed CAHBs) of certain (E)- and (Z)-disubstituted and -trisubstituted β_{γ} unsaturated amides 1 and 1,1-disubstituted (i.e., methylidene) $\beta_{,\gamma}$ -unsaturated amides and *tert*-butyl esters 3.¹¹ Simple chiral catalyst systems have been identified to give chiral β - and γ borylated carbonyl compounds with high regio- and π -facial selectivity (Figure 1). We now report the efficient CAHB of symmetric γ , δ -unsaturated amides 5. For example, 5a undergoes carbonyl-directed CAHB with 4,4,6-trimethyl-1,3,2-dioxaborinane (tmdBH, (\pm) -**B1**) using Rh(nbd)₂BF₄ in conjunction with (BINOL)PN(Bn)Ph (L1b) to give the $cis-\gamma$ -borylated amide (1*R*,3*S*)-**6a** in 80% yield and 94% ee (determined after oxidation) via enantioselective desymmetrization.¹² Asymmetric desymmetrization is a widely used method for generating chiral substances;¹³ however, few examples employ CAHB.¹⁴

Varying the nature of the ligand used (i.e., L1-L5) for rhodium-catalyzed CAHB of **5a** by tmdBH (**B1**) reveals a number of interesting effects on the sense and degree of enantioselectivity (Figure 2). BINOL-derived phosphoramidites L1a-b in combination with tmdBH (**B1**) give the most selective catalysts for the formation of (1R,3S)-**6a** (93–94% ee). Catalysts formed from TADDOL phenyl phosphites L2a-L5a are also quite selective (83-92% ee); small changes in the TADDOL backbone only incrementally affect enantioselectivity. In contrast to the TADDOL-derived phenyl phosphites L2a-L5a and BINOL-derived phosphoramidites L1a/b, TADDOL-derived phosphoramidites afford catalysts that are much less selective with tmdBH; the products obtained are near racemic for most combinations of L2–5 possessing substituents b–e.

Suzuki-Miyaura

stereoretention

1) CAHB

enantioselective desymmetrization (96:4 er)

2) CsF

The enantioselectivity obtained for CAHB by pinBH (B2) with catalysts derived from BINOL-derived phosphoramidites **L1a** and **b** and the series of phenyl phosphites **L2a–L5a** is significantly lower (55–81% ee) than obtained with tmdBH (Figure 2). However, pinBH generally affords higher levels of enantioselectivity with TADDOL-derived phosphoramidites **L2–5b–e**. Furthermore, these phosphoramidites generally give the enantiomeric product compared to that obtained with the corresponding phenyl phosphite; an enantioselectivity as high as 78% ee for (1*S*,3*R*)-**6a** is found using **L3c**. The results are in qualitative agreement with our previous report of exceptionally high levels of enantioswitching¹⁵ with the acyclic substrate **1**.^{11d}

Using the most promising catalyst system identified in our brief ligand/borane survey (i.e., $[(L1b)_2Rh(nbd)BF_4]$ with tmdBH), a series of γ , δ -unsaturated amides **5a**–**1** varying in their amide- and α -substituents are converted via the γ -borylated intermediate to their chiral cyclopentanols **7a**–**1** (Table 1 and Figure 3). Phenyl amides **5a**–**d**, a series of substrates bearing α -H, -alkyl, -aryl, and $-CF_3$ substituents, gave the respective γ -alcohol in good yield and high enantiomeric excess (i.e., **7a**–**d**, 96:4 to 97:3 er) (entries 1–4). Substituting benzyl for phenyl as the amide substituent gave **7e**–**h** in comparable yields but slightly lower enantioselectivity; enantiomer ratios ranged from 92:8 to 96:4 (entries 5–8). Chiral substrates **5i** and **5j** bear a chiral phenethyl substituent on the amide nitrogen and were included in the screening to confirm structural assignments (vide infra). These chiral substrates undergo CAHB with somewhat

Received: January 6, 2015 Published: February 2, 2015

Figure 1. Carbonyl-directed CAHB exploits π -facial selectivity for β , γ unsaturated substrates **1** and **3** and *re/si*-site selectivity for the enantioselective desymmetrization of γ , δ -substrate **5a**.

Figure 2. Varying the boranes and ligands employed strikingly affects the enantioselectivity for the CAHB of 5a.¹⁶

lower stereoselectivity compared to the corresponding phenyl and benzyl amides and exhibit a modest matched/mismatched diastereomer effect (entries 9 and 10).

Two derivatives shown in Figure 3 highlight unusual group selectivity in the CAHB. Substrates **5k** and **5l** each contain two alkene moieties ostensibly positioned equidistant from the carbonyl directing group, one endocyclic double bond, and an unsaturated side chain substituent on the ring. The side-chain alkene is *trans*-disubstituted in the case of **5k** and a methylidene derivative in the case of **5l**. Both substrates undergo CAHB selectively with the endocyclic double bond to give the monounsaturated γ -alcohol [i.e., (1*S*,3*S*)-7**k** and 7**l**, respectively] in good yield (75–80%) and high enantioselectivity (99:1 and 97:3 er, respectively). We speculate that the preferred orientation of the carbonyl oxygen and/or somewhat greater reactivity for the endocyclic double bond might account for the observed product.

The CAHB of chiral amide **5i** proved useful in unambiguously assigning the absolute configuration of the product and thereby the stereochemical course of the reaction. The intermediate

	R ¹ 0	1) 1%	[Rh(nbd) ₂ BF ₄ /2 L1b]	R ¹ 0	
	N- H	-R ² 2.0 2) H ₂ C	tmdBH, THF, 40 °C HC D ₂ /NaOH, rt		²
entry	5	\mathbb{R}^1	\mathbb{R}^2	yield ^a	er/dr^b
1	а	Н	Ph	80	97:3
2	b	Me	Ph	65	96:4
3	с	Ph	Ph	72	96:4
4	d	CF_3	Ph	78	97:3
5	e	Н	Bn	69	94:6
6	f	Me	Bn	62	92:8
7	g	Ph	Bn	70	93:7
8	h	CF_3	Bn	71	96:4
9 ^c	i	Ph	(R)-CH(Me)Ph	76	88:12
10^{c}	j	Ph	(S)-CH(Me)Ph	74	20:80

^{*a*}Isolated yields, an average of three experiments generally exhibiting a spread of $\pm 2\%$. ^{*b*}Enantiomer ratio (er) determined by chiral HPLC analysis or diastereomer ratio (dr) determined by ¹H NMR. ^{*c*}2% catalyst loading.

Figure 3. Group-selective enantioselective desymmetrization.

organoboronate generated upon CAHB was converted to the cesium¹⁷ or potassium¹⁸ trifluoroborate by the reported methods. The latter gave crystals of the major diastereomer suitable for X-ray crystallographic analysis; the structure of $(1R_3S)$ -**8i** (M = K) is shown in Figure 4.

Figure 4. Preparation and crystal structure of **8i** (M = K).

The cross-coupling reactions of chiral, secondary organoboronates have recently attracted a great deal attention.¹⁹ Several examples illustrating successful Suzuki–Miyaura cross-coupling of the benzyl and chiral phenethyl amide derivatives of (1R,3S)-**8i** (M = Cs) using Buchwald's palladium-precatalyst 10^{20} are summarized in Table 2.²¹

Understanding the stereochemical course of the Suzuki– Miyaura reaction has recently attracted considerable attention.¹⁹ Spectral data obtained for products **9a** and **b** indicate that the Table 2. Palladium-Catalyzed Cross-Coupling of Cesium Trifluoroborate Salt 8i

"Isolated yields based on limiting aryl halide, an average ($\pm 2\%$) of two runs. ^bCross-coupling proceeds with high diastereoselectivity (ca. 94:6 dr). ^cCsOH (5 equiv) replaces Cs₂CO₃.

cross-coupling is highly diastereoselective. For example, the ¹⁹F NMR spectrum of 9b shows a single major resonance with no minor peak integrating for more than 6% abundance. As first demonstrated by Crudden,^{1g,2} Suzuki–Miyaura cross-couplings of α -chiral alkylboron compounds possessing adjacent π -systems proceed with stereoretention. However, substrates similar to those used here by Molander²² and Suginome,²³ as well as other substrates reported by Biscoe, ^{1a} Morken, ^{4b} and Hall, ²⁴ proceed with stereoinversion. For example, the borylated amides 17 and 19 undergo palladium-catalyzed cross-coupling with near complete stereoinversion (Figure 5). The intermediate γ -borylated amide (1R,3S)-8i was coupled with 2-methoxy-5-chloropyridine (15); product 9g was isolated and subsequently converted to its tetrafluoroborate salt 21 (66% overall). The latter gives crystals suitable for X-ray analysis which confirms the structure as (1R,3S)-21 and establishes that palladium-catalyzed crosscoupling proceeds with stereoretention.

Substrate reactivity is another aspect of the cross-coupling chemistry that has attracted recent attention.²⁵ For example, Molander¹⁹ proposed that intramolecular hemilabile π -complexation of palladium by a suitably disposed benzyl substituent was a key element facilitating cross-coupling with stereoretention. In contrast to the corresponding benzyl and phenethyl amides, phenyl amide 22 (M = K or Cs) gives little or no cross-coupling product under the conditions used in Table 2. For example, the attempted cross-coupling of phenyl amide 22 with 1-bromonaphthalene gives only 20% (based on limiting aryl bromide) of the cross-coupled product 23; in addition, 7c is isolated in 85% yield (based on the amount of 22) from the reaction mixture after oxidation with Oxone (Figure 6). The reproducible, low yield of cross-coupled product initially suggested that the greater rotational freedom and reach available to benzyl amides was a necessary feature for efficient cross-coupling. However, the direct competition of equal amounts of phenyl amide 22 and 8i (R^1 =

previous work Molander (reference 22) Pd(OAc)₂ 10 mol % 20 mol % Xphos, K2CO CPME / H2O / 95 °C 99% vield 18 17 stereoinversion Suginome (reference 23) Pd2(dba)3 (5 mol %) XPhos (10 mol %) K₂CO₃ (3 equiv) H₂O (2 equiv), toluene 89% vield 20 19 stereoinversion current work 8i (M = Cs) Suzuki-15 Mivaura HBF₄ 90 Et₂O BF 21 stereoretention

Figure 5. In contrast to recent examples of β -borylated amides, palladium-catalyzed cross-coupling of γ -borylated amide (1*R*,3*S*)-**8**i proceeds with stereoretention.

Figure 6. Unexpected influence of the amide substituent on the facility of palladium-catalyzed cross-coupling.

Ph, $R^2 = (R)-CH(Me)Ph)$ for a limiting amount of 1bromonaphthalene 11 gave surprising results and raise doubt about that explanation (Figure 6). The total yield of crosscoupled products is high (90% based on the limiting aryl bromide), and a near 1:1 mixture of 23 (48%) and 9c (42%) is obtained along with commensurate amounts of the respective alcohols 7c and 7i resulting from oxidation of the two residual starting materials.

In summary, carbonyl-directed CAHB of γ , δ -unsaturated substrate **5** proceeds with efficient π -facial discrimination to introduce boron cis with respect to the amide functional group consistent with two-point binding of the substrate as described in a prior computational study;¹² efficient *re/si*-site selectivity by the chiral catalyst controls enantioselectivity. The ligand and the borane employed have striking effects on the level and sense of enantioinduction including in some cases enantioswitching.

Organic Letters

Unusual group selectivity is seen in the CAHBs of the doubly γ , δ unsaturated substrates **5k** and **5l** for which the endocyclic alkene preferentially undergoes reaction. The chiral γ -trifluoroborates produced via CAHB undergo palladium-catalyzed Suzuki– Miyaura cross-coupling with stereoretention. The amide substituent influences the efficiency of the cross-coupling reaction under the conditions examined, although the reasons are not clear. Further studies are in progress.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: jtakacs1@unl.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support for these studies from the NIH (GM100101). The crystal structures reported herein were determined by V. W. Day at the KU Small-Molecule X-ray Crystallography Lab using instrumentation purchased with funds from the NSF (CHE-0923449) and the University of Kansas.

REFERENCES

(1) (a) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. J. Am. Chem. Soc. 2014, 136, 14027–14030. (b) Matthew, S. C.; Glasspoole, B. W.; Eisenberger, P.; Crudden, C. M. J. Am. Chem. Soc. 2014, 136, 5828– 5831. (c) Buesking, A. W.; Ellman, J. A. Chem. Sci. 2014, 5, 1983–1987.
(d) Bonet, A.; Odachowski, M.; Leonori, D.; Essafi, S.; Aggarwal, V. K. Nat. Chem. 2014, 6, 584–589. (e) Zhang, C.; Yun, J. Org. Lett. 2013, 15, 3416–3419. (f) Mlynarski, S. N.; Karns, A. S.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 16449–16451. (g) Imao, D.; Glasspoole, B. W.; Laberge, V. S.; Crudden, C. M. J. Am. Chem. Soc. 2009, 131, 5024–2025.

(2) (a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082–1096. (b) Swift, E. C.; Jarvo, E. R. Tetrahedron 2013, 69, 5799–5817.

(3) Stoichiometric reagents: Brown, J. M.; Nguyen, B. N. Stereoselective hydroboration and diboration of carbon-carbon double bonds; Georg Thieme Verlag: 2011; Vol. 1, pp 295–324.

(4) Group-selective cross-coupling of diboranes: (a) Mlynarski, S. N.; Schuster, C. H.; Morken, J. P. *Nature* **2014**, 505, 386–90. (b) Sun, C.; Potter, B.; Morken, J. P. *J. Am. Chem. Soc.* **2014**, 136, 6534–6537. (c) Dewhurst, R. D.; Marder, T. B. *Nat. Chem.* **2014**, 6, 279–280.

(5) Enantioselective B–H bond insertion: Cheng, Q.; Zhu, S.; Zhang, Y.; Xie, X.; Zhou, Q. J. Am. Chem. Soc. **2013**, 135, 14094–14097.

(6) Conjugate borylation: (a) Radomkit, S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014, 53, 3387–3391. (b) Luo, Y.; Roy, I. D.; Madec, A. G. E.; Lam, H. W. Angew. Chem., Int. Ed. 2014, 53, 4186–4190. (c) Calow, A. D. J.; Batsanov, A. S.; Pujol, A.; Sole, C.; Fernandez, E.; Whiting, A. Org. Lett. 2013, 15, 4810–4813. (d) Callow, A. D. J.; Whiting, A. Org. Biomol. Chem. 2012, 10, 5485–5497.

(7) From vinylboronates: (a) Verendel, J. J.; Pamies, O.; Dieguez, M.; Andersson, P. G. *Chem. Rev.* **2014**, *114*, 2130–2169. (b) Boese, D.; Niesobski, P.; Luebcke, M.; Pietruszka, J. J. Org. *Chem.* **2014**, *79*, 4699– 4703. (c) Lee, J. C. H.; Hall, D. G. J. Am. Chem. Soc. **2010**, *132*, 5544– 5545.

(8) Catalytic asymmetric diboration: (a) Yu, Z.; Ely, R. J.; Morken, J. P. Angew. Chem., Int. Ed. **2014**, 53, 9632–9636. (b) Coombs, J. R.; Haeffner, F.; Kliman, L. T.; Morken, J. P. J. Am. Chem. Soc. **2013**, 135,

11222–11231. (c) Ferris, G. E.; Hong, K.; Roundtree, I. A.; Morken, J. P. J. Am. Chem. Soc. 2013, 135, 2501–2504. (d) Kliman, L. T.; Mlynarski, S. N.; Ferris, G. E.; Morken, J. P. Angew. Chem., Int. Ed. 2012, 51, 521–524. (e) Schuster, C. H.; Li, B.; Morken, J. P. Angew. Chem., Int. Ed. 2011, 50, 7906–7909. (f) Burks, H. E.; Morken, J. P. Chem. Commun. 2007, 4717–4725.

(9) Enantioselective aminoborylation: (a) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. *J. Am. Chem. Soc.* **2013**, *135*, 4934–4937. (b) Hong, K.; Morken, J. P. *J. Am. Chem. Soc.* **2013**, *135*, 9252–9254.

(10) Enantioselective hydroboration of dienes and vinylarenes: (a) He, Z.; Zhao, Y.; Tian, P.; Wang, C.; Dong, H.; Lin, G. Org. Lett. **2014**, *16*, 1426–1429. (b) Feng, X.; Jeon, H.; Yun, J. Angew. Chem., Int. Ed. **2013**, 52, 3989–3992. (c) Kubota, K.; Yamamoto, E.; Ito, H. Adv. Synth. Catal. **2013**, 355, 3527–3531. (d) Moteki, S. A.; Toyama, K.; Liu, Z.; Ma, J.; Holmes, A. E.; Takacs, J. M. Chem. Commun. **2012**, *48*, 263–265. (e) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. **2010**, *132*, 1226–1227. (f) Carroll, A.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. **2005**, 347, 609–631.

(11) (a) Smith, S. M.; Hoang, G. L.; Pal, R.; Khaled, M. O. B.; Pelter, L. S. W.; Zeng, X. C.; Takacs, J. M. Chem. Commun. 2012, 48, 12180–12182. (b) Smith, S. M.; Uteuliyev, M.; Takacs, J. M. Chem. Commun. 2011, 47, 7812–7814. (c) Smith, S. M.; Takacs, J. M. J. Am. Chem. Soc. 2010, 132, 1740–1741. (d) Smith, S. M.; Takacs, J. M. Org. Lett. 2010, 12, 4612–4615. (e) Smith, S. M.; Thacker, N. C.; Takacs, J. M. J. Am. Chem. Soc. 2008, 130, 3734–3735.

(12) For a related computational study, see: Yang, Z.; Pal, R.; Hoang, G. L.; Zeng, X. C.; Takacs, J. M. ACS Catal. **2014**, *4*, 763–773.

(13) Fernandez-Perez, H.; Etayo, P.; Lao, J. R.; Nunez-Rico, J.; Vidal-Ferran, A. *Chem. Commun.* **2013**, *49*, 10666–10675.

(14) (a) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198–7199. (b) Perez Luna, A.; Bonin, M.; Micouin, L.; Husson, H. J. Am. Chem. Soc. 2002, 124, 12098–12099. (c) Brunel, J.; Buono, G. Tetrahedron Lett. 1999, 40, 3561–3564. (d) Burgess, K.; Ohlmeyer, M. J. J. Org. Chem. 1988, 53, 5178–9.

(15) Escorihuela, J.; Burguete, M. I.; Luis, S. V. Chem. Soc. Rev. 2013, 42, 5595–1617.

(16) Conditions: 1% [L₂Rh(nbd)BF₄], 2 equiv **B1** or **B2**, 40 °C, THF; % ee determined by chiral HPLC analysis after oxidation and is an average of two experiments exhibiting a spread of \pm 1% ee.

(17) Lennox, A. J. J.; Lloyd-Jones, G. Angew. Chem., Int. Ed. 2012, 51, 9385–9388.

(18) Molander, G. A.; Shin, I.; Jean-Gerard, L. Org. Lett. 2010, 12, 4384–4387.

(19) Molander, G. A.; Wisniewski, S. R. J. Am. Chem. Soc. 2012, 134, 16856–16868.

(20) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4, 916–920.

(21) The cesium salt gives higher overall yields in the CAHB/Suzuki-Miyaura cross-coupling sequence, mostly due to higher yields in forming the salt. Data on the corresponding potassium salts are given in the Supporting Information, Figure S1.

(22) Sandrock, D. L.; Jean-Gerard, L.; Chen, C.; Dreher, S. D.; Molander, G. A. J. Am. Chem. Soc. **2010**, 132, 17108–17110.

(23) (a) Awano, T.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2011, 133, 20738–20741. (b) Ohmura, T.; Awano, T.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 13191–13193.

(24) Lee, J. C.; McDonald, R.; Hall, D. G. Nat. Chem. 2011, 3, 894–899.

(25) Lennox, A. J. J.; Lloyd-Jones, G. Chem. Soc. Rev. 2014, 43, 412–443.